\(\int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [579]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 120 \[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {2 b \left (3 a^2-b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a \left (a^2+9 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {16 a^2 b \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a^2 (a+b \cos (c+d x)) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \]

[Out]

-2*b*(3*a^2-b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*a
*(a^2+9*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*a^2*(
a+b*cos(d*x+c))*sin(d*x+c)/d/cos(d*x+c)^(3/2)+16/3*a^2*b*sin(d*x+c)/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2871, 3100, 2827, 2720, 2719} \[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 a \left (a^2+9 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}-\frac {2 b \left (3 a^2-b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {16 a^2 b \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}} \]

[In]

Int[(a + b*Cos[c + d*x])^3/Cos[c + d*x]^(5/2),x]

[Out]

(-2*b*(3*a^2 - b^2)*EllipticE[(c + d*x)/2, 2])/d + (2*a*(a^2 + 9*b^2)*EllipticF[(c + d*x)/2, 2])/(3*d) + (16*a
^2*b*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]]) + (2*a^2*(a + b*Cos[c + d*x])*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2
))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2871

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-(b^2*c^2 - 2*a*b*c*d + a^2*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/
(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[e
 + f*x])^(n + 1)*Simp[b*(m - 2)*(b*c - a*d)^2 + a*d*(n + 1)*(c*(a^2 + b^2) - 2*a*b*d) + (b*(n + 1)*(a*b*c^2 +
c*d*(a^2 + b^2) - 3*a*b*d^2) - a*(n + 2)*(b*c - a*d)^2)*Sin[e + f*x] + b*(b^2*(c^2 - d^2) - m*(b*c - a*d)^2 +
d*n*(2*a*b*c - d*(a^2 + b^2)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && LtQ[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a^2 (a+b \cos (c+d x)) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2}{3} \int \frac {4 a^2 b+\frac {1}{2} a \left (a^2+9 b^2\right ) \cos (c+d x)-\frac {1}{2} b \left (a^2-3 b^2\right ) \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {16 a^2 b \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a^2 (a+b \cos (c+d x)) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4}{3} \int \frac {\frac {1}{4} a \left (a^2+9 b^2\right )-\frac {3}{4} b \left (3 a^2-b^2\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {16 a^2 b \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a^2 (a+b \cos (c+d x)) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}-\left (b \left (3 a^2-b^2\right )\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{3} \left (a \left (a^2+9 b^2\right )\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = -\frac {2 b \left (3 a^2-b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a \left (a^2+9 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {16 a^2 b \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a^2 (a+b \cos (c+d x)) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.09 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.71 \[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 \left (\left (-9 a^2 b+3 b^3\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+a \left (\left (a^2+9 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\frac {a (a+9 b \cos (c+d x)) \sin (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}\right )\right )}{3 d} \]

[In]

Integrate[(a + b*Cos[c + d*x])^3/Cos[c + d*x]^(5/2),x]

[Out]

(2*((-9*a^2*b + 3*b^3)*EllipticE[(c + d*x)/2, 2] + a*((a^2 + 9*b^2)*EllipticF[(c + d*x)/2, 2] + (a*(a + 9*b*Co
s[c + d*x])*Sin[c + d*x])/Cos[c + d*x]^(3/2))))/(3*d)

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 9.73 (sec) , antiderivative size = 558, normalized size of antiderivative = 4.65

method result size
parts \(-\frac {2 a^{3} \left (-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}^{\frac {3}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) d}+\frac {2 b^{3} \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}+\frac {6 a \,b^{2} \operatorname {am}^{-1}\left (\frac {d x}{2}+\frac {c}{2}| \sqrt {2}\right )}{d}-\frac {6 a^{2} b \left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(558\)
default \(-\frac {2 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (36 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{2} b -2 F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{3}-18 F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a \,b^{2}-18 E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{2} b +6 E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{3}-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{3}-18 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{2} b +a^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+9 a \,b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+9 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2} b -3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{3}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{3 \left (4 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-4 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(630\)

[In]

int((a+cos(d*x+c)*b)^3/cos(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-2/3*a^3*(-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2
))*sin(1/2*d*x+1/2*c)^2-2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+
1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/
2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(3/2)/sin(1/2*d*x+1/2*c)/d+
2*b^3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2
*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(
1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d+6*a*b^2/d*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))-6*a^2*b*(-2
*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+(sin(1/2*d*x+1/2
*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(c
os(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2
*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 222, normalized size of antiderivative = 1.85 \[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\sqrt {2} {\left (-i \, a^{3} - 9 i \, a b^{2}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (i \, a^{3} + 9 i \, a b^{2}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (3 i \, a^{2} b - i \, b^{3}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (-3 i \, a^{2} b + i \, b^{3}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (9 \, a^{2} b \cos \left (d x + c\right ) + a^{3}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \, d \cos \left (d x + c\right )^{2}} \]

[In]

integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

1/3*(sqrt(2)*(-I*a^3 - 9*I*a*b^2)*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + s
qrt(2)*(I*a^3 + 9*I*a*b^2)*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*sqrt(2
)*(3*I*a^2*b - I*b^3)*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*
x + c))) - 3*sqrt(2)*(-3*I*a^2*b + I*b^3)*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos
(d*x + c) - I*sin(d*x + c))) + 2*(9*a^2*b*cos(d*x + c) + a^3)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)
^2)

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+b*cos(d*x+c))**3/cos(d*x+c)**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^3/cos(d*x + c)^(5/2), x)

Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^3/cos(d*x + c)^(5/2), x)

Mupad [B] (verification not implemented)

Time = 15.47 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.07 \[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2\,\left (\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\,b^3+3\,a\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\,b^2\right )}{d}+\frac {2\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {6\,a^2\,b\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int((a + b*cos(c + d*x))^3/cos(c + d*x)^(5/2),x)

[Out]

(2*(b^3*ellipticE(c/2 + (d*x)/2, 2) + 3*a*b^2*ellipticF(c/2 + (d*x)/2, 2)))/d + (2*a^3*sin(c + d*x)*hypergeom(
[-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1/2)) + (6*a^2*b*sin(c + d*x)*hyp
ergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))